My research

My research mainly focuses on the clinical translation of advanced deep learning and MRI techniques.

Research activities

Publications

Expand the titles for my publications.

  • Li S, Yao Y, Zhong J, et al. ERANet: Edge replacement augmentation for semi-supervised meniscus segmentation with prototype consistency alignment and conditional self-training. Neural Networks. 2026;196:108337. doi:10.1016/j.neunet.2025.108337
  • Khan S, Khawer MA, Zhong J, et al. Advancing deep learning based knee cartilage segmentation in MRI: Innovations, challenges and applications. Osteoarthritis and Cartilage Open. 2026;8(1):100702. doi:10.1016/j.ocarto.2025.100702
  • Zhong J, Huang C, Yu Z, et al. Utilizing 3D Fast Spin Echo Anatomical Imaging to Reduce the Number of Contrast Preparations in T Quantification of Knee Cartilage Using Learning-Based Methods. Magnetic Resonance in Medicine. 2025. doi: 10.1002/mrm.70022.
  • Zhong J, Yao Y, Xiao F, et al. A systematic automated post-processing approach for quantitative analysis of 3D T1ρ knee MRI. arXiv: 2409.12600
  • Yao Y, Zhong J, Zhang L, et al. CartiMorph: A framework for automated knee articular cartilage morphometrics. Medical Image Analysis. 2024 Jan 1;91:103035.
  • Zhong J, Yao Y, Cahill DG, et al. Unsupervised domain adaptation for automated knee osteoarthritis phenotype classification. Quantitative Imaging in Medicine and Surgery. 2023 Oct 17;13(11):7444–7458.

  • Zhong J, Chow JTH, Li KY, et al. 220P Exploring large language model (LLM) for TNM categorizing and re-categorizing nasopharyngeal carcinoma (NPC) from structured text reports. ESMO Real World Data and Digital Oncology. 2025;10:100416. doi:10.1016/j.esmorw.2025.100416
  • Zhong J*, Yao Y*, Xiao F, et al. A SYSTEMATIC POST-PROCESSING APPROACH FOR T1ρ IMAGING OF KNEE ARTICULAR CARTILAGE. In: 19th International Workshop on Osteoarthritis Imaging, Cambridge, United Kingdom, July 9 -12, 2025. Osteoarthritis Imaging 5 (2025) 100275.
  • Zhong J, Huang C, Yu Z, et al. Utilization of Clinical Knee MRI to Accelerate Quantitative T1ρ Imaging of Knee. In: Proceeding of the International Society for Magnetic Resonance in Medicine. Honolulu, Hawaiʻi, USA; 2025.
  • Shen Q, Wong V, Zhong J, et al. Deep learning enabled motion detection in quantitative macromolecule proton faction mapping in the liver. In: Proceeding of the International Society for Magnetic Resonance in Medicine. Honolulu, Hawaiʻi, USA; 2025.
  • Zhong J, Yao Y, Xiao F, et al. A systematic automated post-processing approach for quantitative analysis of 3D T1ρ knee MRI. In: Proceeding of the International Society for Magnetic Resonance in Medicine. Singapore; 2024.
  • Zhong J, Yao Y, Cahill DG, et al. Unsupervised Domain Adaptation for Automated Knee Osteoarthritis Phenotype Classification. In: Proceeding of the International Society for Magnetic Resonance in Medicine. Toronto, ON, Canada; 2023.
  • Zhong J, Yao Y, Khan S, et al. Knee Osteoarthritis: Automatic Grading with Deep Learning. In: Proceeding of the International Society for Magnetic Resonance in Medicine. London, England, UK; 2022.
  • Li S, …, Zhong J, et al. Unsupervised Domain Adaptation via CycleGAN for knee joint Segmentation in MR Images. In: Proceeding of the International Society for Magnetic Resonance in Medicine. London, England, UK; 2022.

Google Scholar

Junru Zhong profile photo

Junru Zhong

The Chinese University of Hong Kong

Research Interests

Publications

11 publications
Title Year Cited by
CartiMorph: a framework for automated knee articular cartilage morphometrics
Y Yao, J Zhong, L Zhang, S Khan, W Chen
arXiv preprint arXiv:2308.01981, 2023
2023 14
Unsupervised Domain Adaptation for Automated Knee Osteoarthritis Phenotype Classification
J Zhong, Y Yao, DG Cahill, F Xiao, S Li, J Lee, KKW Ho, MTY Ong, …
Quantitative Imaging in Medicine and Surgery 13 (11), 7444-7458, 2023
2023 9
ERANet: Edge replacement augmentation for semi-supervised meniscus segmentation with prototype consistency alignment and conditional self-training
S Li, Y Yao, J Zhong, S Zhao, F Xiao, TYM Ong, KWK Ho, JF Griffith, …
Neural Networks, 108337, 2025
2025 4
Advancing deep learning based knee cartilage segmentation in MRI: innovations, challenges and applications
S Khan, MA Khawer, J Zhong, R Qureshi, M Asim, W Chen
Osteoarthritis and Cartilage Open, 100702, 2025
2025 1
Utilisation of clinical knee MRI to accelerate quantitative T1rho imaging of knee
J Zhong, C Huang, Z Yu, F Xiao, S Li, OM Tim-Yun, HK Ki-Wai, Q Chan, …
Proceedings of the 2025 Annual Meeting of ISMRM, Honolulu, HI, 2025
2025 1
A Systematic Post-Processing Approach for Quantitative Imaging of Knee Articular Cartilage
J Zhong, Y Yao, F Xiao, TYM Ong, KWK Ho, S Li, C Huang, Q Chan, …
arXiv preprint arXiv:2409.12600, 2024
2024 1
Knee Osteoarthritis: Automatic Grading with Deep Learning
J Zhong, Y Yao, S Khan, F Xiao, DG Cahill, JF Griffith, W Chen
Proc. 2022 ISMRM & ISMRT Annu. Mtg. Expo, 2022
2022 1
Utilizing 3D fast spin echo anatomical imaging to reduce the number of contrast preparations in T 1 ρ T _ 1 ρ quantification of knee cartilage using learning‐based methods
J Zhong, C Huang, Z Yu, F Xiao, T Blu, S Li, TYM Ong, KWK Ho, Q Chan, …
Magnetic Resonance in Medicine 94 (6), 2745-2757, 2025
2025 0
Deep learning enabled motion detection in quantitative macromolecule proton faction mapping in the liver
Q Shen, V Wong, J Zhong, H Kang, Z Yu, Q Chan, W Chu, W Chen
0
A systematic automated post-processing approach for quantitative analysis of 3D T1ρ knee MRI
J Zhong, Y Yao, F Xiao, MTY Ong, KKW Ho, Q Chan, JF Griffith, W Chen
0
Unsupervised Domain Adaptation via CycleGAN for knee joint Segmentation in MR Images
S LI, S Khan, F XIAO, S ZHAO, J ZHONG, DG Cahill, JF Griffith, W CHEN
0

Citations

All Since 2019
Citations 31 31
h-index 3 3
i10-index 1 1